Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Kinkini Bhattacharyya, ${ }^{\text {a* }}$ Tanusree Kar, ${ }^{\text {a }}$ Gabriele Bocelli, ${ }^{\text {b }}$ Andrea Cantoni, ${ }^{\text {b }}$ Swapan Pramanick, ${ }^{\text {c }}$ Sukdeb Banerjee ${ }^{\text {c }}$ and Sibabrata Mukhopadhyay ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India, ${ }^{\text {b }}$ IMEM (ex CSSD)-CNR, Palazzo Chimico-Campus, Parco Area delle Scienze 17/a, I-43100 Parma, Italy, and ${ }^{\text {c }}$ Department of Medicinal Chemistry, Indian Institute of Chemical Biology, 4 Raja S. C.
Mullick Road, Jadavpur, Kolkata 700 032, India
Correspondence e-mail:
mstk@mahendra.iacs.res.in

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
ωR factor $=0.112$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Redetermination of 14-deoxyandrographolide

The title compound [systematic name: ent-3 β-hydroxy-8(17),13(14)-labdadiene-16,15-olide], $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$, contains two trans fused six-membered rings, with a lactone ring at the end of an equatorial side chain. The six-membered rings are in chair conformations and the lactone ring is planar. There is an infinite chain of both inter- and intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds along the b axis. The present study is a confirmation of the results of previous structure determinations of 14-deoxyandrographolide by Medforth, Chang, Chen, Olmstead \& Smith [J. Chem. Soc. Perkin Trans. 2 (1990), pp. 1011-1016] and Rajnikant, Gupta, Singh, Lal, Gupta \& Varghese [Mol. Cryst. Liq. Cryst. Sect. C (1996), 6, 227-233].

Comment

The title compound, (I), has been isolated from the leaves of Andrographis paniculata Nees (Acanthaceae), which is an annual herb common in Sri Lanka and India. It is extensively used in the Ayurvedic system of medicine in Sri Lanka and India to treat fevers, dysentry, general debility and certain forms of dyspepsia, and also as a stomachic, an anthelmintic and a tonic. A preparation of (I) with pepper is used in the treatment of malarial fever (Spek et al., 1987). Spectoscopic analysis of 14-deoxyandrographolide (Pramanick et al., 2005) affords proof of the stereochemistry at C3, C4 and C9. The present X-ray structure analysis confirms the results of the previous structure determinations of this compound by Medforth et al. (1990) and Rajnikant et al. (1996), but the present structure is determined with better data [1813, $F_{\mathrm{o}}>$ $\left.4 \sigma\left(F_{\mathrm{o}}\right)\right]$, which resulted in a lower reliability factor and more precise molecular geometry.

(I)

The molecule (Fig. 1) has a bicyclic nucleus, to which an α, β unsaturated γ-lactone system is attached through a side chain. Substituents on ring A are a hydroxyl group, a hydroxymethyl group and a methyl group with a second methyl group at the A / B ring junction. Ring B also has an exocyclic methylene group. The hydroxyl group at C3 is equatorial, an α configuration, the C 4 hydroxymethyl group is axial and the side

Received 16 June 2005 Accepted 22 July 2005 Online 30 July 2005

Figure 1
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom numbering.

Figure 2
The crystal packing of (I), with hydrogen bonds drawn as dotted lines.
chain at C 9 is equatorial. Ring A adopts a chair conformation, while ring B is a slightly distorted chair. The ring-puckering parameters for rings A and B (Cremer \& Pople, 1975) are given in Table 3. The five-membered lactone ring is planar, the maximum deviation of ring C atoms from the mean plane describing them being 0.002 (3) \AA. The OH group at C 3 is equatorial, with a $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$ torsion angle of 175.7 (2) ${ }^{\circ}$. The C 18 methyl at C 4 is equatorial with C 19 axial; torsion angles are $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 18=169.1(2)^{\circ}, \mathrm{C} 10-\mathrm{C} 5-$ $\mathrm{C} 4-\mathrm{C} 18=-163.5(2)^{\circ}, \mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 19=-72.1(3)^{\circ}$ and $\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 19=76.2(2)^{\circ}$. The side chain at C 9 is equatorial, with torsion angles $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11=176.5(2)^{\circ}$ and $\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11=-170.9(2)^{\circ}$. The two $\mathrm{O}-\mathrm{H}$ groups on ring A are involved in an intramolecular $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} 2 \cdots \mathrm{O} 1$ hydrogen bond and an intermolecular $\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1 \cdots$ $\mathrm{O} 2\left(x+2, y-\frac{1}{2},-z+1\right)$ hydrogen bond (Table 2), which
links the molecules in infinite chains along the b axis (Fig. 2). A similar hydrogen-bonding scheme has been reported for the related compound andrographolide (Spek et al., 1987).

Experimental

Dry powdered leaves of Andrographis paniculata were successively extracted (Soxhlet) with petroleum ether (333-353 K), chloroform and methanol. Chromatographic separation of the methanol extract resulted in the isolation 14-deoxyandrographolide. Crystals were obtained from a solution of the compound in MeOH by slow evaporation at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}$
$M_{r}=334.44$
Monoclinic, $P 2_{1}$
$a=6.744(2) \AA$
$b=6.988$ (2) \AA
$c=19.377$ (3) \AA
$\beta=93.19$ (3) ${ }^{\circ}$
$V=911.8$ (4) \AA^{3}
$Z=2$

Data collection

Bruker AXS CCD diffractometer
φ and ω scans
Absorption correction: multi-scan
(SHELXTL-NT; Bruker, 1999)
$T_{\text {min }}=0.984, T_{\text {max }}=0.991$
9476 measured reflections
2189 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.112$
$S=1.09$
2189 reflections
222 parameters

$$
D_{x}=1.218 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 867 reflections
$\theta=5.2-23.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Cylinder, colourless
$0.23 \times 0.22 \times 0.11 \mathrm{~mm}$

1813 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-25 \rightarrow 25$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0663 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

C3-O1	$1.435(3)$	$\mathrm{C} 15-\mathrm{O} 3$	$1.438(4)$
C8-C20	$1.332(4)$	$\mathrm{C} 16-\mathrm{O} 4$	$1.204(3)$
C13-C14	$1.324(3)$	$\mathrm{C} 16-\mathrm{O} 3$	$1.346(3)$
C13-C16	$1.473(3)$	$\mathrm{C} 19-\mathrm{O} 2$	$1.424(3)$
C14-C15	$1.482(4)$		
O1-C3-C2	$107.5(2)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 16$	$107.3(2)$
C2-C3-C4	$112.8(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$109.9(2)$
C3-C4-C18	$107.75(18)$	$\mathrm{O} 3-\mathrm{C} 16-\mathrm{C} 13$	$109.2(2)$
C19-C4-C5	$112.29(18)$	$\mathrm{C} 16-\mathrm{O} 3-\mathrm{C} 15$	$109.07(19)$
C7-C8-C9	$114.6(2)$		
C1-C2-C3-O1	$175.7(2)$	$\mathrm{C} 18-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$-163.51(18)$
C2-C3-C4-C19	$-72.1(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$	$176.53(18)$
C2-C3-C4-C18	$169.10(19)$	$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-170.9(2)$
C19-C4-C5-C10	$76.2(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2O2 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.98	$2.675(2)$	142
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 1 O 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.94	$2.740(2)$	166

Symmetry code: (i) $-x+2, y-\frac{1}{2},-z+1$.

organic papers

Table 3
Ring-puckering parameters $\left(\AA,{ }^{\circ}\right)$ for the three rings.

Ring	q_{2}	q_{3}	Q_{T}	θ
A (C1-C5/C10)	$0.082(3)$	$-0.531(2)$	$0.537(3)$	$171.3(3)$
B (C5-C10)	$0.126(2)$	$-0.575(3)$	$0.589(3)$	$167.6(2)$

All H atoms bound to carbon were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methine, $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene, $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, $\mathrm{C}-\mathrm{H}_{\mathrm{o}}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl, and $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2_{\text {eq }}(\mathrm{C})$ for ethylenic CH_{2}. For the hydroxyl H atom, $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}=$ $1.5 U_{\text {eq }}(\mathrm{O})$. In the absence of a significant anomalous scattering, Friedel pairs were merged, and the absolute configuration was assigned by reference to the known chirality of related compounds.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1983).

References

Bruker (1999). SMART (Version 5.1), SAINT (Version 5.1) and SHELXTL$N T$ (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Medforth, C. J., Chang, R. S., Chen, G.-Q., Olmstead, M. M. \& Smith, K. M. (1990). J. Chem. Soc. Perkin Trans 2, pp. 1011-1016.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pramanick, S., Banerjee, S. \& Mukhopadhyay, S. (2005). Private communication.
Rajnikant, Gupta, V. K., Singh, A., Lal, M., Gupta, B. D. \& Varghese, B. (1996). Mol. Cryst. Liq. Cryst. Sect. C, 6, 227-233.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L., Duisenberg, A. J. H., Lababie, R. P., Ratnayake, S., Abeysekera, A. \& De Silva, K. T. D. (1987). Acta Cryst. C43, 530-532.

[^0]: (C) 2005 International Union of Crystallography

